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One of the most important
carrier-phonon scattering
mechanisms in semiconductors
occurs when charge carriers
interact with the electric
polarization, P(r), produced by
the relative displacement of
positive and negative ions. In
low-defect polar
semiconductors such as GaAs,
InP, and GaN, carrier scattering
in polar semiconductors at room
temperature is dominated by
this polar-optical-phonon (POP)
scattering  mechanism.  The
POP-carrier  interaction s
referred to as the Frohlich
interaction, after H. Frohlich,
who formulated the  first
qualitatively  correct  formal
description. In this book, the
potential energy associated with
the Frohlich interaction will be
denoted by #r(r). Clearly the
polarization P associated with
polar-optical phonons and the
potential energy associated with
the Frohlich interaction, #r(r),
are related by

Consider the case of a polar
crystal with two atoms per unit
cell, such as GaAs. Clearly, the
dominant contribution to P(r)
results from the phonon modes
in which the normal distance
between the planes of positive
and negative charge varies.
Such modes are obviously the
LO modes since in the case of

checked

Mot trong nhiing co ché tan xa
hat tai dién-phonon quan trong
nhit trong ban dan xuit hién
khi cac hat tai dién tuong tac
véi ludng cuc dién, P(r), hinh
thanh do chuyén dong twong
dbi cua cac ion duwong va am.
Trong cac ban dan phan cuc
khuyét tat thap chang han nhu
GaAs, InP, va GaN, tan xa hat
tai dién ¢ nhiét do phong chu
yéu do co ché tan xa phonon
quang phan cuc (POP) nay chi
phdi. Tuong tic POP-hat tai
dién duoC goi la tuong tac
Frohlich, theo tén cua Frohlich,
nguoi dau tién da moé ta hién
tuong nay mot cach chinh xac
vé mat dinh tinh. Trong sach
nay, chung ta s& ki hiéu thé
nang UNg Vo1 tuong tac
Frohlich 1a #r(r). RO rang, do
phan cuc P gin véi cac phonon
quang phan cuc va thé ning
gan voi twong tac Frohlich,
#r(r) lién hé véi nhau qua cong
thuc

Xét truong hop tinh thé phan
cuc Vo1 hai nguyén tir trén mot
6 don vi, chang han nhu GaAs.
Pong gop chu yéu vao P(r) 1a
cac mode phonon trong 4o
khoang cach (vuong goc) giira
cac mat phing dién tich duong
va am thay d6i. Hién nhién,
nhimg mode nhu thé 13 céac
mode LO bdi vi trong truong




LO modes eq, j is parallel to g.
However, TO phonons produce
displacements of the planes of
charge such that they remain at
fixed distances from each other;
that 1s, the charge planes ‘slide’
by each other but the normal
distance between planes of
opposite charge does not
change. So, TO modes make
negligible contributions to P(r).
For TO phonons, eq, j ' g — 0.
Accordingly,
5.3 Acoustic phonons and
deformation-potential
interaction
The deformation-potential
interaction arises from local
changes in the crystal’s energy
bands arising from the lattice
distortion created by a phonon.
The deformation-  potential
interaction,  introduced by
Bardeen and Shockley, is one of
the most important interactions
in  modern  semiconductor
devices and it has its origin in
the displacements caused by
phonons. Indeed, the
displacements associated with a
phonon set up a strain field in
the crystal. In the simple case of
a one-dimensional lattice, the
energy of the conduction band,
Ec, or the energy of the valence
band, Ev, will change by an
amount
Ec,v — Ec,v(a) — Ec,v(a + u),
(5.35)

hop cac mode LO eq, j song
song Vv6éi q. Tuy nhién, cac
phonon TO tao ra su dich
chuyén cua cac mat phang dién
tich sao cho chung van cach
nhau khoang cach ¢ dinh; tuc
13, cac mat phang dién tich
“trugt” so voO1 nhau nhung
khoang cach (vudng goc) gilra
cac mit phing dién tich d6i
dién khong thay d6i. Vi vay,
cac mode TO dong gop khong
dang ké vao P(r). Déi véi cac
phonon TO,




where a is the lattice constant
and u is the displacement
produced by the phonon mode.
Since a » u, it follows that
A Ecyv(@ — (dEc,v(a)/da)ue
(5.36)
Thus the phonon displacement
field u produces a local change
in the band energy; the energy
associated with the change is
known as the deformation
potential and it represents one
of the major scattering
mechanisms in non-polar
semiconductors. Indeed, the
deformation-potential
interaction is a dominant source
of electron energy loss in
silicon-based electronic devices.
The three-dimensional
generalization of AEc,v is
A Ec,v(a) — (dEc,v(a)/dV )AV,
(5.37)
where V is a volume element
and AV is the change in the
volume element due to the
phonon field. For an isotropic
medium AV/V — V m u and
the last expression becomes,
AEc,v(a) — V(dEc,v(a)/dV)V =
u, (5.38)
which is usually written as
Hdcefv — AEc,v(a) — E1,vV =
u (5.39)
The superscripts on Hf and EM
are  necessary since the
deformation  potential  for
electrons is different from that
for holes. Chapter 9 provides a
discussion of the case where the




medium is not assumed to be
isotropic.

5.4  Piezoelectric interaction
The piezoelectric interaction
occurs in all polar crystals
lacking an inversion symmetry.
In the general case, the
application of an external strain
to a piezoelectric crystal will
produce a macroscopic
polarization as a result of the
displacements of ions. Thus an
acoustic phonon mode will

drive a macroscopic
polarization in a piezoelectric
crystal. In rectangular

coordinates, the polarization
created by the piezoelectric
interaction in cubic crystals,
including zincblende crystals,
may be written as

7.1 Dielectric continuum
model of phonons

The dielectric continuum model
of optical phonons in polar
materials is based on the
concept that the associated
lattice vibrations produce an
electric polarization P(r) that is
describable in terms of the
equations of electrostatics for a
medium of dielectric constant
e(rn). The volume of the
structure is assumed to be L3 (-
L/2 < X, ¥y, z < +L/2) with
periodic boundary conditions.
The potential $(r) associated
with P(r) is given by (Kim and
Stroscio, 1990)

for a ternary polar material




AyB\—yC, where the subscript
a denotes frequencies associated
with the dipole pairs AC and the
subscript b denotes frequencies
associated with the dipole pairs
BC. As in subsection 2.3.1, the
displacement field is related to
the fields E(r) and P(r) through
the driven oscillator equation
and through the effective
charge, e* : for a binary
medium n,

An alternative and useful form
of these equations for the case
of a binary material results
straightforwardly  from  the
relations of Appendix A.
Indeed, it is shown in Appendix
A, equations (A.8) and (A.9),
for a diatomic polar material
that

In the first equation it has been
assumed that u has a general
form for the time dependence
and may not be simply
sinusoidal in 0. As will become
evident, this pair of equations is
well suited as the basis for an
alternative method for
performing the calculations of
subsection 7.3.1. Moreover, it
provides a convenient starting
point for the derivation of the
macroscopic equations
describing optical phonons in
polar uniaxial materials
(Loudon,  1964).  Uniaxial
materials such as the hexagonal
wurtzite structures GaN, AIN,
and Gax Ali-x N have relatively




wide bandgaps and are suited
for high-temperature electronics
and short-wavelength
optoelectronic devices. Loudon
(1964) introduced a useful
model for describing the
macroscopic equations of a
uniaxial polar crystal by
introducing  one  dielectric
constant associated with the
direction parallel to the c-axis,
ey, and another dielectric
constant associated with the
direction perpendicular to the c-
axis, et. In Loudon’s model a
separate set of Huang-Born
equations is necessary for the
phonon mode displacements
parallel to the c-axis, uy, and
perpendicular to it, uT. For a
medium denoted by n it then
follows straightforwardly that
and

(7.12)

Of course, in Loudon’s model
these six equations must be
supplemented by the following
three equations of electrostatics
for the case where there is no
free charge:

(7.13)

where z and p are the unit
vectors in the \| and =+ directions
respectively.

In the first and third of this set
of nine equations, it has been
assumed that uT,n and iiy,n
have a general form of the
dependence and may not be
simply sinusoidal in M; the




assumption of sinusoidal time
dependence made in Appendix
A was not necessary and simply
by replacing -«2u by u it is
straightforward to rederive the
results of Appendix A without
assuming a sinusoidal time
dependence.

The above set of nine equations
provides a convenient basis for
describing carrier-optical-
phonon scattering in wurtzite
crystals. Indeed, using the
relations for the displacement
perpendicular (parallel) to the c-
axis,

In the isotropic case, e(rn)T =
e(«)y and this result must
reduce to the expression, (5.34),
obtained in Section 5.2 for the
interaction Hamiltonian
describing  the  carrier-LO-
phonon interactions. Indeed,
since the general form of the
Lyddane-Sachs-Teller relation
implies that the Hamiltonian
for the uniaxial case reduces to
(5.34) upon taking e(rm)T =
e(«)\| and Mg = MLO.

7.2  Elastic continuum model
of phonons

As will become clear, the elastic
continuum model of acoustic
phonons provides an adequate
description of acoustic phonons
for  nanostructures  having
confined dimensions of about
two atomic monolayers. A
simple and illustrative
application of the elastic




continuum model is found in the
case of a longitudinal acoustic
mode propagating in a quasi-
one-dimensional structure.
Consider an element dx located
along this structure between x
and x +dx. Let u(x, t) be the
elastic displacement at x along
the axis of the one-dimensional
structure; that is, u (X, %)
describes the uniform
longitudinal displacement of the
element dx. In the elastic
continuum model the dynamics
of the mass-containing element,
dx, are described in terms of
Newton’s laws. Indeed, defining
the strain as e = du/dx and the
stress, T(x), as the force per unit
area in  the  quasi-one-
dimensional structure of area A,
it follows from Hooke’s law
that

T=Ye, (7.23)

where Y is a proportionality
constant known as Young’s
modulus. The force equation
describing the dynamics of the
element dx of density p(x) is
given by

Seeking solutions of this one-
dimensional wave equation of
the form u(x) =

% el (gx Mt), where q = 2n/\
and M is the angular frequency
of the wave, it follows that the
dispersion relation for the
longitudinal  acoustic  (LA)
mode is pm2 = YQg2 or m = viq,
where vi = Y/p. The




longitudinal sound speed, i,
has typical values (3-5) x 105
cmslandforp=4gcm3it
follows that Y must have an
order of magnitude of 1012 g
cm s-2.

The three-dimensional
generalization of these results
may be accomplished through
the replacements (Auld, 1973)
u(x) *u(x,y, z) = (u, v, w) and
T=Yer"T=c:SwithT\=
djSj. In this generalization,
Young’s modulus is replaced by
a 6 x 6 matrix of elastic
constants Cij; T is replaced by a
six-component object Ti; e is
replaced by a six-component
object Sj. For the cubic,
zincblende, and wurtzite
crystals the most general form
of the stress-strain relation, Tij
= cijkISkl, where i, j, I, k run
over X, Y, z, may be represented
by Ti = cij Sj. In this last result,

For the elastic energy to be
single valued cij = Cji, and it
follows that only 21 distinct
elements are necessary to define
the 6 x 6 matrix cij.
Nanostructures  of widespread
interest in modern electronics
and optoelectronics are
generally  fabricated  from
zincblende and wiirtzite
crystals. For cubic crystals,
including zincblende crystals,
the matrix cij is of the form and




for wurtzite crystals cij is of the
form

For a cubic medium such as the
zincblende crystal, only three
independent elastic constants,
cl1, clq, and c44, are needed to
specify all the cij. For an
isotropic cubic medium clq =
cll — 2c44, and only two
constants X and i are necessary
to define the ci

The constants X and i are
known as Lame’s constants.
Thus, in the cubic case three
independent constants replace
Y: c¢l11, which relates the
compressive stress to the strain
along the same direction, [100];
c44, which relates the shear
stress and the strain in the same
direction; and c1q, which relates
the compressive stress in one
direction and the strain in
another direction. For the
isotropic case, it follows that

Two alternative forms of the
three-dimensional force
equations are  encountered
frequently in the literature. The
first of these is derived by
writing the components of u(x,
Yy, ) = (ui, u2, u3) as ua, a = 1,
2, 3; it then follows that the
three force equations may be
rewritten as

In  these equations, the
subscripts a and fi run over 1, 2,
3 (corresponding to X, vy, z). A
repeated index in a term implies




summation. Sap is  the
Kronecker delta function. In a
second alternative form the
three force equations are written
straightforwardly as the single
vector equation

Here, ct and ci are the
transverse and longitudinal
sound speeds and we have

In  physical acoustics the
solutions for the displacement
fields are frequently specified in
terms of two potential functions,
a scalar potential $ and a vector

The  scalar  potential $
corresponds to the ‘irrotational’
part of the solution and the
vector potential corresponds to
any remaining  ‘rotational’
fields. In the literature the
irrotational solutions are also
referred to as the longitudinal,
compressional, or dilatational
solutions. Moreover,
seismologists frequently refer to
these solutions as P waves.
Likewise, the rotational vector-
potential solutions based on are
identified as transverse, shear,
distortional, or equivoluminal
solutions. In seismology these
solutions are commonly
identified as S waves.

7.3  Optical modes in
dimensionally confined
structures

The dielectric continuum model
has been applied to describe the
properties of dimensionally




confined optical phonons in
many electronic and
optoelectronics devices
fabricated from semiconductor
nanostructures. These include
quantum wells, superlattices,
quantum wires, and quantum
dots. To illustrate the basic
features of the dielectric
continuum model of optical
phonons, the case of
confinement in  just one
dimension - as in a quantum
well or superlattice - is
considered first. In addition, the
dielectric continuum model will
be compared with other
continuum models, including
the hydrodynamic model and
the reformulated dielectric
continuum model. These
models predict different sets of
confined optical phonon modes
but each model predicts the
same carrier-phonon scattering
rate as long as it includes a
complete set of orthogonal
phonon modes (Nash, 1992).
Following a comparison of
these models, a microscopic
treatment of confined phonon
modes will be discussed.

7.3.1 Dielectric continuum
model  for slab  modes:
normalization  of interface
modes

The dielectric continuum model
predicts a set of confined optical
phonon  modes commonly
referred to as the slab modes.




These slab modes may be
determined by applying the
dielectric continuum model and
by  imposing  electrostatic
boundary conditions at each
heterointerface. The normal-
mode frequencies and
orthogonal confined phonon
modes are obtained through the
simultaneous solution of the
equations arising from the
dielectric continuum  model,
subject to the boundary
conditions that the potential, $
(r) and the normal component of
D(r) are continuous at each
heterointerface. ~ Taking the
heterointerfaces to be normal to
the z-direction, the electrostatic
potential (r) in the region Ri —
(zi, n+l) and its two-
dimensional Fourier transform
(g, z) are related by

(7.42)

Following the concepts of
Section 5.1, the mode
normalization condition
requires that the energy of a
phonon of mode q is h rng; for
the case of a single interface at z
— 0 separating two layers n and
m, this condition is

(7.44)

To illustrate the normalization
procedure, let us consider one
of the classes of optical phonon
modes existing for this one-
heterointerface structure. The
wave equations for the fields of
relevance here admit both




oscillating and exponential
solutions. In particular, let us
consider the solutions having an
exponential character. For these
modes, known as the interface
(IF) modes, we take. where q is
the unit vector specifying the
direction of g = (gx, qy). Let
material n be a binary layer
filling the space z > 0, region i,
and material m be a ternary
layer filling the space z < O,
region 2, as illustrated in Figure
7.1. Then, for the right-hand
medium, material i, using the
notation of Appendix B, it
follows that

For material 2, there are two
driven-oscillator equations, one
for the AC pair, denoted by a,
and one for the BC pair,
denoted by b:

and the electric polarization in
the virtual-crystal
approximation is

With these expressions for ul(q,
z) and uq a(b)(@, z), the
normalization condition, with n
— land m— 2, yields

where the integral in the first
term has been performed using
and the second and third
integrals have been performed
using

Thus the normalization constant
c is determined. It is convenient
to rewrite this expression using
conditions derived by Wendler
(1985). These conditions are




discussed in Appendix B. The
conditions that are useful at this
point in our derivation are

Here the subscript n represents
either material 1 or material 2.
In these relations, the plasma
frequency squared, «2lasma n,
Is given by

As may be verified
algebraically, the Lyddane-
Sachs-Teller relations of
subsection 2.3.3 are satisfied by
these frequencies (Wendler,
1985).

With these results of Wendler, a
straightforward  but lengthy
derivation yields

where, as discussed previously,

Finally, multiplying $(r) by — e
and introducing aq and agq,
according to the procedure
described in Section 5.1, the
interaction Hamiltonian for the
interface (IF) optical phonon
mode may be written as (Kim
and Stroscio, 1990)

where eq, j and eq j of equation
(6.2) have been taken as unit
vectors in the longitudinal
direction, since the IF phonon
modes considered here are
longitudinal ~ optical (LO)
phonons. The dispersion
relation for this optical phonon
mode is given from the
requirement that the normal
components of the electric




displacement field be
continuous at z = 0, that is,
62(G)E2,Z |z=0 = 61 (G)Ei,z
|z=0. From this condition, it
follows immediately that the
frequencies of the IF optical
phonons must satisfy 61(G) +
62(G) = 0.

This result is similar to that for
a bulk semiconductor, where the
optical phonon frequencies must
satisfy 6 (G) = 0. Moreover,
since this is the condition
necessary for the propagation of
any longitudinal
electromagnetic disturbance, it
was  expected that the
frequencies of longitudinal
optical phonons should satisfy
this dispersion relation.

7.3.2 Electron—phonon
interaction for slab modes

Here, it is instructive to
consider an earlier - and
intuitively very appealing -
theory of  electron-phonon
interactions in a dielectric slab
given by Licari and Evrard
(1977). In this theory, a single
dielectric slab of infinite extent
in the x- and y-directions is
situated with its faces at —a and
+a and with its surface bounded
by a vacuum in the regions with
|z| > a. Within this dielectric
slab V- D — 0, where,

as usual, D(r) = e(;)E(r) = E(r) +
4nP(r); 6(G) is the dielectric
constant of the slab and P(r) is




the electric polarization
associated with the optical
phonons in the slab. Defining a
scalar potential through E(r) =
—V0(r) and, since the system is
translationally invariant in the
xy-plane, taking O(r) to be of the
form O(r) = 0(z) elgH'p, where p
= (x, y) and qy = (gx, qy), it
follows that

6(G) (1°,—qg2) t(z) =0 (7.61)
where g2 = gX + g2 This
equation is satisfied when 6(G)
= 0 or when (d2/d2z — q\\)0(2)
= 0. As shown previously, from
the general form of 6(G) - as
given for example in Appendix
A - and the Lydanne-Sachs-
Teller relation, the condition
6(G) = 0 is satisfied for a single-
material system when G = glo.
In this case an arbitrary
function, 0(z), is a solution of
the wave equation; Licari and
Evrard took this solution (as did
Fuchs and Kliewer, 1965, and
Kliewer and Fuchs, 1966a, b) to
be of the form

0(z) = ~($i sin gzz + 02 cos
qzz), (7.62)

qz

inside the slab i.e., in the range
(—a, +a). Outside the slab,
where 6 = 1, the solutions have
the form 0(2) =
O+exp(+"j~q2+~q2z), where the
positive sign applies forz<—a
and the negative sign applies for
z > +a. The constants 0i, 02, 0+,
and 0— are determined by the




usual boundary conditions that
the tangential component of E
and the normal component of D
are continuous at z = +a. From
these conditions it is seen that
0+ = 0 and it 1s thus clear that
for this mode 0(z), E(r), and
D(r) are zero in the regions
surrounding the slab; in
particular 0 (z) vanishes at the
surfaces of the layer, where z =
+a. For z in the range (—a, +a),
the boundary conditions may be
satisfied by taking either 01 = 0
or 02 = 0, so that there are two
solutions corresponding to the
two polarization vectors:

where z is the unit vector in the
z-direction. Of course, V- D(r)
= 0 implies that

\/ 20(r) = - V-E(r) = +4n V-
P(r). These standing modes are
now widely known as the
confined optical phonon modes
in a slab. They exist for m
running from 1 to some
maximum number NZ2a; the
values of m must terminate at
N2a, the number of unit cells in
thickness  2a, since the
continuum model adopted here
must fail when the number of
half-wavelengths in 2a becomes
equal to or greater than the
number of unit cells in the same
thickness.

where qy is the unit two-
dimensional wavevector. These
last two modes describe the so-
called IF optical phonon modes




in the polar semiconductor slab
of thickness 2a. The boundary
conditions imply that the
frequencies for these modes are
solutions of

where the plus sign corresponds
to the even mode, the minus
sign to the odd mode.

As pointed out by Licari and
Evrard (1977), this continuum
model is capable of predicting
both the confined LO phonons
and the interface IF optical
phonons because for both of
these modes there exists a
polarization charge density. In
particular, both p — —V « P,
the volume charge density, and
a’ — —P < n, the surface
charge density, contribute to the
confined LO modes; here, n is
the unit vector normal to the
surface and pointing into the
vacuum. For the IF modes, only
a' makes a contribution. Clearly,
in this model the polarization
charge acts as the source of the
fields associated with these
phonon  modes. Transverse
modes are not predicted by this
continuum approach since for
such modes VP — 0 and P e n

Licari and Evrard (1977) used this
model to study the effects of electronic
polarizability on the phonon modes and
they derive conditions for the slab




which are equivalent to Wendler’s
conditions for the two-layer system
described in Appendix B. Licari and
Evrard also wused their model to
construct the normalized polarization
eigenvectors and frequencies for the
phonon modes of the dielectric slab.
Moreover, they constructed the
Hamiltonian for the electron-polar-
optical-phonon interaction and showed
that the correct harmonic oscillator
energy is recovered when the
eigenvectors of the slab are used to
evaluate the Hamiltonian; in particular,
it can be shown that the normal modes
are consistent with the harmonic
oscillator energy of Section 5.1. Finally,
Licari and Evrard presented a very
enlightening physical derivation of the
electron-phonon interaction
Hamiltonian for a slab by applying
boundary conditions to the electron-
phonon interaction Hamiltonian for a
bulk  semiconductor.  Specifically,
starting with expression for the bulk
Frohlich interaction, which we take as
the expression (5.34) derived in Section
5.2,

Licari and Evrard took g = (qy, gz) and
split the sum over g into a sum over qy
and a sum over gz

Then, using el9 = cos 9 + i sin 9 to write
etiqzz in terms of sines and cosines,

The operators a+ (—qy) and a— (—qy)
are given by taking the adjoints. These
operators describe phonons which
propagate as plane waves in the x- and
y-directions but as standing modes in
the z-direction. Indeed, since gz =




mn/2a the Frohlich Hamiltonian for the
two-dimensional slab takes the form

This Hamiltonian vanishes for z — +a,
as it must since the Frohlich interaction
Hamiltonian is given by — e$, as
explained in Section 5.2, and since
$(+a) — O for the potential describing
the fields associated with phonon modes
in the dielectric slab. This heuristic
derivation makes manifest the fact that
the confined phonon modes in the slab
located between —a and +a are standing
modes with an integer number of half-
wavelengths confined within the slab.
This Hamiltonian does not contain the
contributions of the IF optical phonons
in the slab since it satisfies only the
boundary conditions for the confined
optical phonon modes at z — =+a,
namely HFr(a) — —e”(+a) — 0. As
shown by Licari and Evrard (1977), the
Frohlich interaction Hamiltonian for the
IF optical phonon modes in the
dielectric slab is

7.3.4 Transfer matrix model for multi-
heterointerface structures

Yu et al. (1997) derived a very useful
set of normalization conditions for
heterostructures containing multiple
parallel  heterointerfaces  separating
different semiconductor layers. These
normalization conditions are essential
for examining the optical phonon
bandstructure in superlattices and they
provide the basis for relatively
straightforward calculations of the
normalization factors for
heterostructures containing just a few




heterointerfaces. Since translational
invariance holds in the two-dimensional
planes parallel to the heterointerfaces,
the electrostatic potential describing the
carrier-optical-phonon interaction in
each region R; = (z;, z;+0 is denoted by
$; (r) and is taken to be of the form
(7.101)

where the z-axis is taken to be normal to
the heterointerfaces and where, as usual,
p = (X, y) and g denote the position and
wavevector in two dimensions. c;- and
c; + are the relative amplitudes of the
exponentially decaying and growing
potentials, respectively, in layer i; as
will become clear, these relative
amplitudes are related through a transfer
matrix. Figure 7.5 depicts a generic
potential &; (z) for regions Ro, Ri,... ,
R...

7.6  Continuum model for acoustic
modes in dimensionally confined
structures

7.6.3 Acoustic phonons in rectangular
guantum wires

The classical compressional acoustic
modes in free-standing rods with
rectangular cross sections have been
examined experimentally (Morse, 1948)
and theoretically (Morse, 1949, 1950).
The solutions obtained by Morse are
based on the elastic continuum model as
well as on the approximation method of
separation of variables. As illustrated
previously, these classical elastic
continuum solutions provide the basis
for describing the compressional - that
Is, the longitudinal - phonon modes in a
nanoscale quantum wire with a




rectangular cross section. For cross-
sectional dimensions with aspect ratios
of approximately two or greater, Morse
(1948, 1949, 1950) found that these
solutions provide simple and accurate
analytical expressions in agreement
with the experimentally observed modes
over a wide range of conditions.
Consider a free-standing rectangular rod
of infinite length in the z-direction with
an x-directed height 2a and a width 2d
in the y-direction, as shown in Figure
7.18.

Taking the origin of the coordinates in
the geometric center of the of the xy-
plane, the acoustic mode displacements
determined by Morse are given by u(x,
Yy, Z) — (ul, v1, wl), where

p is the density of the elastic medium,
and the longitudinal and transverse
sound speeds are given by

The modes associated with this case are
known as the °‘thickness modes’, as
designated by Morse, who showed that
h — hl — h2 leads to an adequate
description of the experimentally
determined modes when d > 2a (Morse,
1948). Using the expressions (7.177) for
u, v, and w to evaluate Txx — Tyx —
Tzx — 0 at X — =a, 1t follows that
(7.180)

The dispersion relation for g2 — 0 is
given by the expression resulting from
the condition that the determinant of the
coefficients vanishes, that is,

tan g2a 4g91lg2(h2 + y 2) tan gla (h2 +
y2—q|)2’

which is similar to the dispersion
relation for a free-standing layer




discussed in subsection 7.6.1. For
calculating  the acoustic  phonon
frequencies as functions of the
wavevector, Y , it is convenient to
rewrite this dispersion relation as

where x2 and ty2 are related to g1 and
g2 through g1 — (n / a™MJTx"—ty2, g2
— (n/a)*x2 — ty2 and in accordance
with mf — cl(y2 + h2 + gf) and mf —
ct(y2 +

h2+q(), where e - (ct/ci)2 - (1—2a)/(2 —
2a). Defining 5 - ay/n andrecalling that
My - cy, it follows that

(7.183)

The remaining constant A is determined
by quantizing the phonon amplitude
according to

(7.186)

where MY s the angular frequency of
the mode with wavevector .
Performing the indicated integrations, it
follows

with

It is convenient to define a new
normalization constant BY, through

As discussed by Morse, h must be
chosen to satisfy the boundary condition
on the stress components at y = +d, that
is, Tyy = Txy = Tzy = 0. This can be
accomplished for d > 2a since in this
case Txy and Tzy become negligible;
with Tyy = 0 this implies that
hd=(n+21n,n=0,1,2,...

The principal propagation mode has no
nodal surfaces parallel to the length of
the quantum wire; this corresponds to
the case n = 0. Morse found close
agreement  between  theory and
experiment for a/d = 1/8 and as
expected less agreement for a/d = 1/2.




In addition to the ‘thickness modes’
another set of modes was observed
experimentally by Morse (1948, 1950).
These modes are known as ‘width
modes’ and are determined by a
procedure used to analyze the ‘thickness
modes’. Specifically, Morse took ql =
g2 = q and obtained a set of equations
similar to those for ul, ul, and wl but
with x and y interchanged. By imposing
the boundary conditions at y = +d, the
‘width modes’ were found to have a
dispersion relation identical in form to
that for the °‘thickness modes.” The
dispersion curves for selected acoustic
modes are shown in Figure 7.19 for a
28.3 A x 56.6 A GaAs quantum wire
and in Figure 7.20 for a 50 A x 200 A
GaAs quantum wire.

For carriers at the non-degenerate V
point in band a, Ea(k), the deformation-
potential interaction Hamiltonian Hof is
given in terms of the displacement
operator u(r) by

(7.191)

At such a symmetry point, only the
irrotational - that is, the longitudinal -
components of u(r) contribute to
Accordingly, only the the potential 0
contributes to Hdef. Since there are
multiple modes for a given value of n,
another index, m, is needed to describe
the phonon spectrum at each value of Y
. For the case of a quantum wire, the
quantization of the acoustic phonons
may be performed by taking (7.192)
where the components of u(y, X, y) =
(u,v,w) were normalized previously
over the area 4ad. The deformation




potential is then given by (7.193)

and, upon applying the Fermi golden
rule, these combinations lead to
conditions enforcing the conservation of
energy.

The Hamiltonian is independent of time.
In Chapters 8 and 9, such time-
independent carrier-phonon
Hamiltonians will be used in applying
the Fermi golden rule to calculate
carrier-phonon scattering rates. The
carrier-phonon interaction also has a
time dependence of the form eLJY 1,
where rnY is the phonon frequency. As
will become obvious in Chapters 8 and
9, such time-dependent factors are
combined with the time-independent
factors of carrier wavefunctions.

7.6.4 Acoustic phonons in cylindrical
structures

The acoustic phonons in a cylindrical
waveguide and in a cylindrical shell
illustrate key features of the confined
modes in dimensionally confined
structures. The cylindrical waveguide is
of obvious practical importance.
Furthermore, the cylindrical shell is of
interest because it approximates a
single-walled buckytube

and also because it resembles the
microtubuline structure found in many
parts of the human body. As discussed
previously in this section and in Section
7.3, the elastic continuum model
provides an approximate description of
the acoustic phonon modes in such
dimensionally confined nanostructures.
The force equations for a cylindrical
elastic medium may be written as




(7.197)

where the axis of the cylinder is
oriented along the z--direction, y is the
azimuthal angle, and r is the radial
coordinate of the cylindrical structure.
As before, the stress tensor T is related
to the strain tensor S through the
Hooke’s law relationship

(7.198)

In this stress-strain relation, k and \x are
the Lame constants. Alternatively, these
force equations are frequently written in
the form

where the elastic stiffness tensor for a
particular isotropic medium is expressed
as

J = xSijSki + 2StkSji.  (7.200)

These equations are more complicated
than their counterparts in rectilinear
coordinates, Section 7.2. Indeed, the
additional complexity of the force
equations in cylindrical coordinates is a
direct consequence of the fact that in
curvilinear coordinates the basis vectors
are coordinate dependent.

Consider the acoustic phonon modes in
a cylindrical waveguide of radius a
embedded in an elastic medium. Both of
these media are taken to be isotropic.
From the normalization procedures of
Section 5.1, the modes are normalized
in terms of w instead of u since the
considerations of Appendix A make it
clear that it is convenient to use w =
ypu; the displacement operator U(r) is
then given by

The quantum number n labels modes
with the same m and g in the set wmn,q
(r), where q represents the z-component




of the wavevector gz. In determining the
normalization constants for the normal
modes wmn q (r), it is convenient to
write
Wmn,q (r) = Wmn,q (r) eimv+igz/a =
u(r) eimv+igz/a, (7.202)
Vn a2N
where u(r) is the classical displacement
given by the elastic continuum model
and the normalization constant N is then
determined by the normalization
condition
d r p(r)wn>m>q (r) * wn',m',q'(r) —
$n,m,g\n',m',q’, (7.2°3)
and q = agz.
Let the density and Lame constants of
the cylindrical waveguide be p1, Al and
A1 respectively, and those of the
surrounding material be p2, X2 and fi2.
The general solution of the classical
elastic continuum equations for such a
cylindrical structure may be written
(Beltzer, 1988; Stroscio et ai., 1996) in
terms of three scalar potentials 0, f, and
X as
u=Vtp + Vezf+ aVv ~xV~x <izx,
(7.204)
where ez is a unit vector along the z-
direction. The second and third terms in
this last result correspond to the usual
irrotational contribution to u, expressed
as a sum of two mutually normal
vectors. The potentials 0 * f, and x
satisfy scalar wave equations with
longitudinal and transverse sound
speeds given by
ci$ =V (k$ + 2M$)/P$ and ct $ = j
n$/P$ ; (7.205)
the subscript $ takes on the value 1 to
designate the material parameters of the




cylinder and the subscript 2 to designate
those of the surrounding material.
Solutions of the classical elastic
continuum equations are sought with
vibration frequency m, wavevector gz =
g/a, and azimuthal quantum number m.
Seeking acoustic modes confined near
the cylindrical waveguide, the scalar
potentials for r < a are taken to be

and the bll etc. are normalization
constants, to be determined. In the
expressionsfor0 , f, and x, it is
assumed that k21 > 0 and Kft > 0, since
confined acoustic modes are desired.
Substituting these potentials into the
general expression for u it follows that
for r > a. By applying the boundary
conditions of continuity of displacement
and continuity of the normal
components of the stress tensor at r = a,
it follows that

where the normalization condition
gives

Again, at such a symmetry point only
the irrotational - that is, the longitudinal
- components of u(r) contribute to Hdf
Accordingly, only the the potential O,
(7.204), contributes to Hdf. Indeed,
from the normalized components wmn _
q (r) (7.202), U(r) is obtained readily
and by using the relation V20 = —
(rn/cl)20 it follows that

Let us consider the case of a thin
cylindrical shell. For a cylindrical shell,
the boundary conditions on the inner
and outer surfaces are

where P represents an external pressure
that would be present, for example, in
the case where the cylindrical shell is in
contact with a liquid, TMV is the stress




tensor, and nv is the normal to the
surface of the shell. In particular, P = +P
iner

n = ~er where er is the unit vector in the
r-direction. The subscripts ‘in’ and ‘out’
are alternatives. For a cylindrical shell
of infinite length in the z-direction and
of thickness h and radius R such that h *
R, the boundary conditions are

/2 =TrzZlR*"h/2=0" Trr 1 R*/2 =
Pin. (7.225)

Assuming that all quantities except Trr
are nearly constant with respect to r
over the interval from R — h/2 to R +
h/2, it is possible to show that

These results follow straightforwardly
by integrating the right- and left-hand
sides of each force equation over the
interval from R — h/2 to R + h/2,
invoking the boundary conditions in the
radial force equation, and cancelling
factors of h. From the stress-strain
relation (7.198), it follows that

Using these stress-strain relations and
eliminating the Lame constants in favor
of Young’s modulus and the Poisson
ratio, the force equations may be written
as

it follows that the longitudinal mode has
frequency Qlongitudinal = Qim = ~JV-
m. Since Q™ ~ 0 was obtained in the
lowest order in q it is necessary to find
the first non-vanishing term. For m = 0,
by making the assumption that = ag2
and collecting terms up to order g4 in
the dispersion equation, it follows that
One of the roots of this equation, a = V-,
corresponds to the mode Q™=0, and
another root, a = 1 - v2, implies that
QM A V1 - v2q. For the case where m =




0, by making the assumption (Q")2 =
ag4 and collecting terms up to g4 in the
dispersion relation, it follows that
sothatal =1,a2 =V-,and a3 = 0. The
result a3 = 0 is inconsistent with the
initial guess, so solutions are of the
form Q2 ” constant. Then from the last
two terms of the dispersion relation,
with leading fourth power of g, it
follows that v-94Q2 - V- (1 - V2)g4 ~ 0,
and Q2 ~ 1 - v2. Convenient
interpolation formulae between the
small-q and large-q solutions are given
by

In the axisymmetric case with m = 0 the
I, I, and 1l modes correspond to pure
radial, torsional, and longitudinal modes
respectively. When m = 0, the radial and
torsional modes are coupled. In the limit
where ¢ » m + 1 the asymptotic
expressions do not depend on m;
indeed, in this limit Qm (q) - 9, Q% (q)
- ~JV-¢q, and QIm(q) - V1 - v2 .
Analysis of the coefficients cr, cf, and
cz (Sirenko et ai., 19964, b) reveals that
in the limit of large q the I, Il, and IlI
modes correspond to pure longitudinal,
torsional, and radial vibrations,
respectively.

speed and density of water are taken to
be 1.50 km s-1 and 1 g cm-3. The
calculated dispersion relations, QIm(q),
form =1, 2, and 3 are shown in Figures
7.21,7.22, and 7.23, respectively.

From Figures 7.21-7.23, it is apparent
that for gz » m/R the mode frequencies
of the immersed MTs tend to those of
the free-standing MTs and do not
depend on m. These modes are seen to




have maximum frequencies of the order
of tens of GHz. Moreover, the sound
speeds of the axisymmetric acoustic
modes are in the range 200-600 ms-1.
Sirenko et al. (1996b) also considered
the dynamical behavior of cytoskeletal
filaments, by wusing the elastic
continuum model to determine the mode
structure for the vibrations of a solid
cylinder. Particular attention was given
to (a) the axisymmetric torsional mode,
(b) the axisymmetric radial-longitudinal
mode, and (c) the flexural mode, as
depicted in Figure 7.24.

7.6.5 Acoustic phonons in quantum
dots

In quantum dots, phonons and carriers
alike are modified as a result of abrupt
changes in the material properties at the
interface between the quantum dot and
the surrounding material. Indeed, carrier
wavefunctions are modified as a result
of the variations in the electron and hole
band energies near the boundaries of the
guantum dot. In the case of acoustic
phonons, the changes in elastic
properties near the quantum-dot
boundaries lead to modifications in the
displacement amplitudes. The acoustic
phonon modes for spherical quantum
dots and for quantum dots with
rectangular-face confinement have been
considered previously (Stroscio et al.,
1994). For the case of a free-standing
spherical quantum dot, the quantization
of the acoustic phonons may be
performed by taking

Here, a is the radius of the quantum dot,
N is the number of unit cells in the
normalization volume V, dq is the




phonon annihilation operator, q is the
phonon wavevector, mq is the angular
frequency of the phonon mode, M is the
mass of the ions in the unit cell, and
r,0,$ are the usual spherical coordinates.
For a quantum dot with rectangular
faces the normalization condition for the
acoustic phonon mode amplitude is
given by (7.258)

The classical acoustic modes in an
isotropic elastic medium have been
analyzed previously, and many of the
most useful known results summarized,
by Auld (1973). The lowest-order pure-
compressional mode is referred to
frequently as the breathing mode. The
displacement field associated with this
lowest order compressional mode of a
sphere of radius a is given by

where vy is the normalization constant, r
is the unit vector in the radial direction,
j is the spherical Bessel function of
order unity, j1 (x) = sin X /x2 — cos x/X,
—q is the mode frequency, and the
longitudinal sound speed cl is equal to
V (k + 2fi)/p. The frequency for a free-
standing sphere is determined by the
condition that the normal component of
the traction force at the surface of the
sphere vanishes; that is, Trr=0at r a:
where jO(x) = sin x/x is the spherical
Bessel function of order zero. This last
result implies that

The normalization condition for this
lowest-order breathing mode is

with a>i representing the quantity
rnga/ci. This integral may be performed
analytically and it follows that

(7.263)

where the second-order spherical Bessel




function, j2(x), is defined by j2(x) =
[(3/x3) (1/x)] sin x — (3/x2) cos X.
The lowest-order breathing and
torsional modes for a spherical quantum
dot are shown in Figure 7.25.

The lowest-order torsional mode - a
pure shear mode - of an free-standing
isotropic spherical quantum dot may be
determined from the known elastic-
continuum solution for the lowest-order
classical pure shear mode of an
isotropic elastic medium (Auld, 1973):
Figure 7.25. Lowest-order

(@) breathing mode and (b) torsional
mode in a spherical quantum dot. From
Stroscio et ai. (1994), American

Institute of Physics, with permission.
where p is the unit vector in the p-
direction, T is the normalization
constant to be determined from the
phonon normalization condition, and the
transverse sound speed of the shear
wave is given by ct = Vi/p. This mode is
depicted in Figure 7.25(b). The
normalization condition for this mode is
with  at = rnga/ct. Thus, the
normalization constant T may be
evaluated in terms of the same integral
used to calculate Y ; indeed,

Following the same procedure as for the
breathing mode, it follows that the
dispersion relation for the lowest-order
torsional mode is

Krauss and Wise (1997) have recently
observed the coherent acoustic phonons
in spherical quantum dots. The damping
of the lowest-order acoustic phonon
modes observed by Krauss and Wise
has been described in terms of the




elastic continuum model by Stroscio
and Dutta (1999).

McSkimin (1944) gave approximate
classical flexural thickness modes for a
structure with rectangular faces. The
structure considered in this section has
faces joining each other at right angles,
and the faces in the xy-, yz-, and xz-
planes are rectangles such that the width
of the structure - in the x-direction - is a,
the height of the structure - in the y-
direction - is b, and the length of the
structure - in the z-direction - is c. The
approximate flexural thickness modes
given by McSkimin are

u(x, y, z) = A sinmx (sin/l1 y + a sinl2y
+ fi sinl3y) cosnz, v(X, y, z) = A cos mx
where a and i are determined by
applying desired boundary conditions
on two sets of rectangular faces. The
discrete mode indices for the x- and z-
dimensions are labeled by m and n
respectively. For the y-dimension, the
mode index for the

The deformation potential for these
flexural thickness modes has an
especially simple form at a non-
degenerate V -point, namely,

In fact, the spatially dependent terms in
Hdef do not depend on a and i.




